Rasterizing polygon from numpy arrays
alexisshakas@...
Hello,
I've been struggling with this for quite some time now, so its time to ask for help. My problem is set up as follows: I want to create a binary mask for an image that is quite large (~10k rows and 360 columns). I have several polygons, all closed, and I want to assign all values that fall in the polygons as True. The polygons are in the form of a numpy array, with (x,y) coordinates. Each polygon has roughly 1000 values. I have about 200 such polygons for a given image. Ideally, since the polygons are quite small, I should not query all points of the image (as suggested for example here https://stackoverflow.com/questions/36399381/whatsthefastestwayofcheckingifapointisinsideapolygoninpython) I found documentation about how to rasterize shapefiles here https://rasterio.readthedocs.io/en/latest/api/rasterio.features.html using for example
Is it possible? I should also mention that my image axes are mixed. The vertical axis is a float (depths, from 0m to ~100m at 1 mm spacing) while the horizontal axis contains integers (angles, from 0 to 360 in 1 degree increments). But I could also change these to be simply indices (both integers). Thank you for any feedback!

